Electrodeionization (EDI) invented over 20 years ago, is a continuous and chemical free process that removes ionized and ionizable impurities from the feed water using DC power. EDI is most commonly used to treat reverse osmosis (RO) permeate and replace mixed bed ion exchange (MB) to produce high purity water of up to 18 MΩ·cm. EDI eliminates the need to store and handle hazardous chemicals required for resin regeneration and the associated neutralization steps.

Conventional EDI is limited by feed water hardness, free CO₂ and Silica. Recovery of the EDI process is dependent upon feed water hardness.

The Fractional electrodeionization (FEDI™) process is an advancement in EDI. It was developed taking into account the above limitations of conventional EDI which, if not addressed properly, lead to scaling and reduced module efficiency and reliability. There are two types of ionic impurities removed in an EDI process; strongly ionized impurities (divalent ions such as Ca, Mg, SO₄) and monovalent ions such as Na, Cl, and HCO₃) and weakly ionized impurities (such as CO₂, B and SiO₂).

Conventional EDI addresses both strongly and weakly ionized impurities in the same manner with the application of one current per module. The hardness limitations in conventional EDI essentially exist because of the alkaline conditions in the concentrate compartment of the EDI module which can lead to hardness precipitation, even at very low values in the feed water.

Both types of ionic impurities require a different driving force (current) for movement and separation. Strongly ionized impurities require less current whereas weakly ionized impurities require more. Rather than applying one current to the entire module the FEDI™ process differentiates the treatment of weakly ionized and strongly ionized impurities by application of different current and voltage in a two stage process. This allows a significant portion of strongly ionized impurities, mainly the divalent ions which can cause precipitation at a higher voltage, to be removed in stage 1. Subsequently, a higher voltage is applied for removal of weakly ionized impurities in stage 2.

The rejected ions from both the stages are removed using separate reject streams, preventing hardness precipitation.
EDI™ TWO STAGE SEPARATION

Hardness is the scaling component and the main limiting factor for feed conditions in a conventional EDI. By incorporating a two stage separation process with different voltages the FEDI™ process is able to:

- **Achieve a higher hardness tolerance** by having distinctly different concentrate chambers with separate reject streams and thus reducing the potential of hardness scaling.
- **Optimize power consumption** by using higher electrical current only where required.
- **Ensure best quality water continuously & consistently** by removing a major part of deionization load in the 'hardness removal zone' while residual ionic impurities are effectively removed in the 'silica removal zone' which stays in polishing mode.

STAGE 1: HARDNESS REMOVAL ZONE

This section, where a significant amount of strongly ionized impurities such as hardness are removed, operates at a lower voltage and current and requires about one third of the total power consumed. The acidic condition in the concentrate chamber of stage - 1 prevents scale formation, thus giving a higher hardness tolerance to the FEDI™ process. The patented ion exchange media construction used in the module further reduces hardness scaling potential.

STAGE 2: SILICA REMOVAL ZONE

Weakly ionized impurities (such as Silica and Boron) are removed in stage-2. Higher voltage and current in this zone provides efficient removal of residual weakly ionized impurities as significant amount of strongly ionized impurities have already been removed in the stage-1. The higher voltage also ensures stage-2 to remain in highly regenerated state resulting in superior quality of final product water. The high pH feed condition in stage-2 helps with efficient removal of Silica and Boron.

Fractional Electrodeionization Cell

[Diagram of the process with labeled components and reactions]
Electrodeionization offers significant advantages over Mixed Bed (MB) ion exchange, particularly the minimization of hazardous chemicals.

BENEFITS

<table>
<thead>
<tr>
<th>Non-hazardous Green Technology</th>
<th>MB</th>
<th>EDI</th>
<th>FEDI™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation of ultra-pure water without having to discharge chemical laden regeneration waste streams</td>
<td>✓️</td>
<td>✓️</td>
<td>✓️</td>
</tr>
</tbody>
</table>

Safety Considerations

- Elimination of hazardous chemicals such as acid and caustic required for regeneration of ion exchange resin in a conventional demineralization process
 - No need for chemical storage
 - No chance of chemical spillage
 - No need to transport chemicals to and from project site

Treated Water Quality Improvements

- Produces from 1 MΩ.cm high purity water to 18 MΩ.cm ultra pure water with very low levels of silica & boron.
- Produces consistent and continuous good quality water
- No down time as no regeneration is required
- Standby units not required
- Multiple stacks are used for higher flows, which offers flexibility for replacement/repair for long term

Total installed cost and total lifecycle cost savings

Value Addition in FEDI™ Process

- Flexibility to handle feed condition variations due to dual voltage operation
- Higher feed hardness tolerance thus avoiding or eliminating module scaling
- Effective and efficient removal of weakly and strongly ionized impurities
- Optimum power consumption

<table>
<thead>
<tr>
<th>MB</th>
<th>EDI</th>
<th>FEDI™</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>✓️</td>
<td>✓️</td>
</tr>
<tr>
<td>NA</td>
<td>✓️</td>
<td>✓️</td>
</tr>
<tr>
<td>NA</td>
<td>✓️</td>
<td>✓️</td>
</tr>
</tbody>
</table>